Reconstruction of Cranial Bone Defects with Fiber-reinforced Composite–bioactive Glass Implants
نویسندگان
چکیده
Jaakko Piitulainen Reconstruction of cranial bone defects with fiber-reinforced composite–bioactive glass implants From the University of Turku, Faculty of Medicine, Department of Otorhinolaryngology–Head and Neck Surgery and the Department of Biomaterials Science, Doctoral Programme of Clinical Investigation; and Turku University Hospital, Turku, Finland Annales Universitas Turkuensis Ser. D, Painosalama Oy – Turku, Finland 2015 A cranial bone defect may result after an operative treatment of trauma, infection, vascular insult, or tumor. New biomaterials for cranial bone defect reconstructions are needed for example to mimic the biomechanical properties and structure of cranial bone. A novel glass fiber-reinforced composite implant with bioactive glass particulates (FRC–BG, fiber-reinforced composite–bioactive glass) has osteointegrative potential in a preclinical setting. The aim of the first and second study was to investigate the functionality of a FRC–BG implant in the reconstruction of cranial bone defects. During the years 2007–2014, a prospective clinical trial was conducted in two tertiary level academic institutions (Turku University Hospital and Oulu University Hospital) to evaluate the treatment outcome in 35 patients that underwent a FRC–BG cranioplasty. The treatment outcome was good both in adult and pediatric patients. A number of conventional complications related to cranioplasty were observed. In the third study, a retrospective outcome evaluation of 100 cranioplasty procedures performed in Turku University Hospital between years 2002–2012 was conducted. The experimental fourth study was conducted to test the load-bearing capacity and fracture behavior of FRC–BG implants under static loading. The interconnective bars in the implant structure markedly increased the load-bearing capacity of the implant. A loading test did not demonstrate any protrusions of glass fibers or fiber cut. The fracture type was buckling and delamination. In this study, a postoperative complication requiring a reoperation or removal of the cranioplasty material was observed in one out of five cranioplasty patients. The treatment outcomes of cranioplasty performed with different synthetic materials did not show significant difference when compared with autograft. The FRC–BG implant was demonstrated to be safe and biocompatible biomaterial for large cranial bone defect reconstructions in adult and pediatric patients.
منابع مشابه
Craniofacial bone reconstruction with bioactive fiber-reinforced composite implant.
BACKGROUND A novel, bioactive, fiber-reinforced composite implant is a solution to address the shortcomings in craniofacial bone reconstruction. A longitudinal clinical investigation with a follow-up time of 4 years was conducted. METHODS A cranial bone reconstruction with the implant was performed on 12 patients. In these patients, the reasons for craniotomies resulting in craniofacial bone ...
متن کاملDevelopment of Porous Glass-fiber Reinforced Composite for Bone Implants
Sara Nganga. Development of porous glass-fiber reinforced composite for bone implants. Evaluation of antimicrobial effect and implant fixation. Department of Biomaterials Science, Institute of Dentistry, University of Turku. Annales Universitas Turkuensis, Turku, Finland, 2013. Cranial bone reconstructions are necessary for correcting large skull bone defects due to trauma, tumors, infections a...
متن کاملStem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles
Abstract Background and Objectives Now day, using of stem cells and nanoparticles in the differentiation of stem cells is considered as a therapeutic approach. The purpose of this study was to synthesize and characterize nanocomposite polyacrylic polycarboxylic acid containing nanoparticles of biologically active glass 45S5 crushed and assessment effect of this composite on the propagation and...
متن کاملFreeform Extrusion Fabrication of Titanium Fiber Reinforced Bioactive Glass Scaffolds
Although implants made with bioactive glass have shown promising results for bone repair, their application in repairing load-bearing long bones is limited due to their low fracture toughness and fairly fast degradation response in vivo. In this paper, we describe our investigation of freeform extrusion fabrication of silicate based 13-93 bioactive glass scaffolds reinforced with titanium fiber...
متن کاملREPAIR OF SEGMENTAL BONE DEFECTS WITH FIBER-REINFORCED COMPOSITE: a study of material development and an animal model on rabbits
Mikko Hautamäki. Repair of segmental bone defects with fiber-reinforced composite: a study of material development and an animal model on rabbits Department of Biomaterials Science, Institute of Dentistry, Faculty of Medicine, University of Turku and Department of Orthopaedics and Traumatology, Turku University Hospital Annales Universitas Turkuensis, Turku, Finland, 2012 The Repair of segmenta...
متن کامل